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ACombinedMAPandBayesianScheme forFiniteData

and/orMovingHorizonEstimation ?

Ramón A. Delgado a, Graham C. Goodwin a,

aSchool of Electrical Engineering and Computer Science,
The University of Newcastle, Australia

Abstract

Finite data and moving horizon estimation schemes are increasingly being used for a range of practical problems. However,
both schemes suffer from potential conceptual difficulties. In the case of finite data, most of the methods in common use,
excluding Bayesian strategies, depend upon asymptotic results. On the other hand, in the case of moving horizon estimation,
there are two associated problems, namely (i) estimation error quantification is typically not available as a part of the solution
and (ii) one needs to provide some form of prior state estimate (the so-called “arrival cost” ). The current paper proposes a
combined MAP-Bayesian scheme which, inter alia, addresses the finite data and moving horizon problems described above.
The scheme combines MAP and Bayesian strategies. The efficacy of the method is illustrated via numerical examples.
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1 Introduction

Finite data estimation arise in many practical problems.
A well known example is parameter estimation when
only a small amount of data is available. It is common
practice to use schemes such as Prediction Error Meth-
ods (PEM) (Ljung 1999) for finite data parameter es-
timation. These generally perform well but suffer from
conceptual problems. For example, the usual quantifica-
tion of the accuracy in PEM depends upon asymptotic
results. This has motivated several authors to develop
alternative schemes for parameter estimation with finite
data (Campi & Weyer 2002, Weyer & Campi 2002). Of
course, full Bayesian methods also provide a solution to
the finite data problem but these suffer from other diffi-
culties as we will discuss below.

A closely related problem to finite data estimation oc-
curs in Moving Horizon Estimation (MHE). MHE com-
bines a sequence of finite data problems. It has received
increasing attention over the last decade (Rao, Rawlings
& Lee 2001, Rao 2000, Başar & Bernhard 2008, Verdu
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& Poor 1987, Rao, Rawlings & Mayne 2003, Alessan-
dri, Baglietto & Battistelli 2008, Rawlings & Bakshi
2006). MHE transforms filtering, smoothing and predic-
tion problems into a standard constrained optimisation
problem over a finite horizon. In order to limit the size of
the problem, MHE requires that the range of data used
for estimation be small. This means that, when new data
arrives, the oldest data is summarized by a, so called,
“arrival cost” 1 .

MHE has several advantages compared with other
schemes. These advantages arise due to the transforma-
tion of the problem into a standard optimisation prob-
lem. One advantage, is that it allows one to incorporate
constraints, for example, on the states of the system (e.g
a tank cannot be more than full or less than empty).
Also, standard tools developed for Model Predictive
Control can be applied to MHE (see e.g. (Rawlings &
Mayne 2009, Diehl, Ferreau & Haverbeke 2009)).

On the other hand, there are difficulties associated with
the usual MHE scheme. For example, the impact of past
data needs to be summarized in the form of an a-priori
distribution. This is typically achieved by adding an ar-
rival cost. (Verdu & Poor 1987, Başar & Bernhard 2008,
Rao et al. 2003). However, the formulation of a statis-
tically well posed arrival cost remains an open problem

1 This has also been called “entry cost” in the literature.
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(Haseltine & Rawlings 2005). To address this problem
various approximate arrival cost strategies have been
proposed, see e.g (Rao et al. 2001, Rao 2000, Alessandri
et al. 2008, Zavala 2010, Ungarala 2009). One such strat-
egy expresses the arrival cost as a simple quadratic func-
tion of the difference between the current initial state,
and the propagation of the initial state estimate from
the previous horizon (see e.g. (Alessandri et al. 2008,
Alessandri, Baglietto, Battistelli & Zavala 2010)).

MHE can be given two interpretations. If one adopts
probabilistic models, then MHE can be interpreted as
computing the Maximum A Posteriori (MAP) estimate.
Alternatively, one can interpret the MHE method as
simply a procedure for comparing a measured trajec-
tory with a model trajectory via a suitable cost func-
tion. Whichever interpretation one uses, MHE requires
optimization for its solution. A fundamental issue of rel-
evance to the current paper is that only a point estimate
is obtained. In the sequel we adopt the probabilistic in-
terpretation.

By way of contrast, Bayesian estimation computes the
complete a-posteriori distribution. However, Bayesian
estimation also suffers from disadvantages. In particular,
Bayesian estimation is generally computationally expen-
sive. Moreover, the size of the problem typically grows
exponentially with the number of data points. Hence
some form of simplification is usually required. In prac-
tice, this is achieved by using approximate schemes e.g.
deterministic gridding algorithms, particle filtering or
other resampling methods (Chen 2003).

Here, we propose an alternative approach to finite data
and/or moving horizon estimation that combines MAP
and Bayesian techniques. It provides a solution to both
the entry cost and error quantification problems.

The layout of the remainder of the paper is as follows:
In section 2, we present the problem formulation. In sec-
tion 3 we outline the combined MAP-Bayesian scheme
for finite data problems. In section 4 we explain the ex-
tension to Moving Horizon Estimation. In section 5, we
present several examples. Conclusions are presented in
section 6.

2 Problem formulation

Consider a nonlinear system described by a state space
model of the form

xt+1 = f(xt) + wt (1)

yt = h(xt) + vt (2)

where xt ∈ Rnx , yt ∈ Rny . For simplicity 2 we assume
that [

wt

vk

]
∼ N

([
Q 0

0 R

])
(3)

Our goal is to estimate the states x0, . . . , xN , given ob-
servations y1, . . . , yN . We also assume that a prior dis-
tribution is available for x0.

Two general approaches for solving this problem are
MAP and Bayesian estimation. These two approaches
are based on the common element of the a-posteriori dis-
tribution. An expression for the a-posteriori distribution
is given in Lemma 1 below:.

Lemma 1 For the system (1)-(2), the a-posteriori dis-
tribution for the states x0, . . . , xN , given the observations
y1, . . . , yN is

p(x0, x1, . . . , xN |y1, . . . , yN )

∝
N∏
i=1

p(xi|xi−1)p(yi|xi)p(x0) (4)

where ∝ denotes “modulo a normalizing constant”.

Proof 1 From Bayes rule,

p(x0, x1, . . . , xN |y0, . . . , yN−1)

∝p(y1, . . . , yN |x0, . . . , xN )p(x0, . . . , xN ) (5)

The results then follows by using the Markov property
inherent in (1),(2). 2

MAP and Bayesian estimation can then be described as
follows:

Maximum A Posteriori (MAP) estimation provides a
point estimate corresponding to the maximum of the a-
posteriori distribution, i.e.

x̂0, . . . , x̂N = arg max
x0,...,xN

p(x0, x1, . . . , xN |y1, . . . , yN )

(6)

Note that the associated algorithm only explores the a-
posteriori distribution in so far as is necessary to reach
the maximum.

On the other hand, Bayesian Estimation is aimed at
computing (at least approximately) the complete a-
posteriori distribution as in (4). From this distribution,
one can extract any desired point estimate (e.g. mean,

2 The extension to more general models and noise distribu-
tions presents no additional conceptual difficulties.
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MAP, etc.). Information about the accuracy of any
particular estimate is automatically available.

Unfortunately, the computation of the complete a-
posteriori distribution is, in general, intractable. How-
ever there are very special cases, such as unconstrained
linear Gaussian problems, where the Kalman Filter pro-
vides an exact representation of the a-posteriori distri-
bution. Hence, for most problems, approximate methods
are typically used in practice. For example, the Ex-
tended Kalman Filter (EKF) ,see e.g. (Jazwinski 1970),
linearizes the non linear system, then applies standard
Kalman Filter to propagate the mean and covariance
of the estimates. Alternatively, one could use a deter-
ministic grid on the state space. A related approach is
Minimum Distortion Filtering (MDF) (Goodwin, Feuer
& Müller 2010), which uses a grid for the a-posteriori
distribution that is focussed on the most likely parts of
the state space. Another commonly used method is Par-
ticle Filtering (PF) (Gordon, Salmond & Smith 1993).
This method draws a set of random samples from the
disturbance distribution.

Here we propose a strategy which combines MAP and
Bayesian methods. The core idea is explained in the next
section.

3 Combined MAP and Bayesian estimation

We begin by describing the algorithm in the context
of finite data estimation. (Note that this is a necessary
precursor to the moving horizon case).

Initialization: We assume that we are given the prior
distribution p(x0) and data y1, . . . , yN . Also, we assume
that p(x0) is well approximated by a point distribution
of the form

p(x0) =

Nx∑
s=1

p0sδ(x0 − x̄0(s)) (7)

where p01, . . . , p
0
Nx

denote point probability masses at
x̄0(1), . . . , x̄0(Nx) respectively, and Nx is the number of
points in the point distribution.

We also assume we are given a point distribution M(x)
with Nx points,

M(x) =

Nx∑
l=1

qlδ(x− u(l)) (8)

that approximates a multivariate standard Gaussian dis-
tribution in Rnx , i.e zero mean and diagonal unitary
variance Inx

.

Our proposal has 4 components.

(i) MAP estimation: In the combined MAP and
Bayesian estimation, we first use MAP estimation to ob-
tain a single trajectory estimate x̂1, . . . , x̂N . Note that
we do not produce a MAP estimate for x0, instead we
marginalize over the point distribution form of p(x0), i.e.

x̂1, . . . , x̂N

= arg max
x1,...,xN

Nx∑
s=1

p(x̄0(s), x1, . . . , xN |y1, . . . , yN ). (9)

The estimated trajectory x̂1, . . . , x̂N is the “most likely”
trajectory in the state space. However, there is no infor-
mation about the accuracy of estimate.

(ii) EKF for breadth estimation: The EKF provides
a computationally efficient way to obtain a measure of
the covariance of the estimates. The EKF uses the stan-
dard Kalman Filter covariance update given by

Πk|k−1 = Ak−1Πk−1|k−1A
T
k−1 +Q (10)

Lk = Πk|k−1C
T
k (CkΠk|k−1C

T
k +R)−1 (11)

Πk|k = Πk|k−1 − LkCkΠk|k−1 (12)

where, in our approach, we linearize the nonlinear system
about the MAP estimate x̂1, . . . , x̂N , i.e. we use

Ak =
∂f(x)

∂xT

∣∣∣∣
x=x̂k

Ck =
∂h(x)

∂xT

∣∣∣∣
x=x̂k

(13)

where Π0|0 is computed as

Π0|0 =

Nx∑
s=1

p0s(x̄0(s)− x̂0)(x̄0(s)− x̂0)T (14)

x̂0 =

Nx∑
s=1

p0sx̄0(s) (15)

(iii) Gridding: (Here we shift and scale the point dis-
tribution (8)). Given the MAP estimates x̂1, . . . , x̂N in
(9) and the covariances Π1|1, . . . ,ΠN |N computed using
(12), we have a Gaussian approximation for the distribu-
tion of xk, k = 1, . . . , N . Next, for each k = 1, . . . , N we
allocate a set of Nx points by using the following affine
transformation of M(x), i.e. for l = 1, . . . , Nx, we define

x̄k(l) = x̂k + Π
1/2
k|ku(l). (16)

where M(x) and the corresponding points u(l) are de-
fined by (8), and x̂k as in (9).

Remark 1 Note, that the probability masses ql, l =
1, . . . , Nx of M(x) are not used in the method, since the
probability masses are computed in step (iv). OOO
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(iv) Approximate Bayesian update: The previous
step provide a grid of points x̄k(l), k = 1, . . . , N , l =
1, . . . , Nx that is allocated in a part of the state space
where the a-posteriori distribution is concentrated. In
this step, the corresponding probability masses pkl are
computed. To compute pkl we carry out a full recursive
Bayesian computation over the grid. For l = 1, . . . , Nx
beginning with k = 1 compute

pkl = p(x̄k(l)|y1, . . . , yk)

= c

Nx∑
j=1

pk−1j p(x̄k(l)|x̄k−1(j)) · p(yk|x̄k(l)) (17)

where c is a normalizing constant, when k is updated
then pkl is computed for l = 1, . . . , Nx using (17). The
procedure is repeated until plN is computed for l =
1, . . . , Nx.

The proposed method is summarized in Algorithm 1

Algorithm 1 Combined MAP and Bayesian estimation
algorithm

• Initialize:
? Provide a point distribution for the initial state as

in (7).
? Provide a point distribution M(x) that approxi-

mates a multivariate standard Gaussian distribu-
tion, as in (8).

• Obtain a trajectory x̂1, . . . , x̂N by solving (9).
• Compute the covariance of x0, Π0|0, using (14), and

then compute Π1|1, . . . ,ΠN |N using (10)-(13).
• Allocate a grid of points, x̄k(l), k = 1, . . . , N ; l =

1, . . . , Nx on the state space by using (16).
• Perform full Bayesian update over the grid of points,

i.e. for k = 1, . . . , N
? for l = 1 : Nx, compute the point masses pkl by using

(17)
? k = k + 1
• End Result: The pair (x̄k(l), pkl ) for k = 1, . . . , N ;
l = 1, . . . , Nx that approximates the a-posteriori dis-
tribution (4).

Remark 2 If the prior distribution is continuous, then
one can obtain p(x0) as in (7) by random sampling or by
use of vector quantization methods (see e.g. (Gersho &
Gray 1992)). This step is computationally expensive but
will be performed off-line before running the algorithm.
The same techniques can also be used to obtain the point
distribution M(x). OOO

Remark 3 The idea behind the proposed approach is to
provide additional information about the estimate ob-
tained by MAP estimation. However the proposed ap-
proach can also be used to improve the accuracy infor-
mation provided by other methods, such as the Extended

Kalman Filter, or the Unscented Kalman Filter, among
others. OOO

Remark 4 The current exposition of the combined
MAP-Bayesian estimation, suggests that the single tra-
jectory x̂1, . . . , x̂N is obtained by using MAP estimation.
Nevertheless, the proposed approach can also be applied
when the single trajectory is obtained using other opti-
mization based methods. OOO

In the next section we will show how the above finite data
scheme can be deployed in the moving horizon frame-
work.

4 Moving Horizon Estimation

In Moving Horizon Estimation (MHE), the estimation
is carried out online by successively solving a sequence
of finite data problems. A new issue that arises in the
MHE framework is how to incorporate the effect of
the past data (outside the current estimation inter-
val). In the combined MAP-Bayesian framework, the
a-posteriori distribution for the last state can be stored
and reused at a later time as the prior distribution.

There are several versions of the moving horizon algo-
rithm depending upon whether estimates are required
only after each block of N samples or whether estimates
are needed after each data point is received. We refer to
these cases as Block estimation and Sample-by-Sample
estimation, respectively.

(i) Block estimation. Here one simply uses the a-
posteriori distribution for the final state obtained in
the previous block as prior distribution for the next
block (see e.g (Rawlings & Mayne 2009, page 353))

(ii) Sample-by-Sample estimation with filtered update.
Here one needs to place the a-posteriori distribution
for the final state obtained from the current block in a
“rotating store”. This scheme can be seen as N Block
estimators running in parallel.

(ii) Sample-by-Sample estimation with smoothed up-
date: in this update scheme the second value of the
previous solution is used as the initial condition.

An analysis of the different Sample-by-Sample update
schemes can be found in (Findeisen 1997). Here, we focus
on the Block estimation scheme. However, there is no
conceptual difficulties to use the proposed approach with
any of the MHE schemes described above.

Regarding the stability and convergence of the approach,
the proposed MHE scheme described here, can be seen
as a special case of the algorithm described in (Rao
et al. 2003). Hence, the stability and convergence results
presented in (Rao et al. 2003) can also be adapted to the
method proposed here.
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5 Numerical examples

In this section we present two numerical examples. In
the first example, we consider a two state batch reactor.
For the second example, we consider a single state water
tank, with two different radii as a function of the height.

5.1 Batch reactor

Consider a well-mixed semibatch chemical reactor where
the material balances for the two components are

ċA = −2κ c2A +
Qf
V
cAf (18)

ċB = κ c2A +
Qf
V
cBf (19)

with parameter values

Qf
V

= 0.4; κ = 0.16; cAf = 1; cBf = 0

The initial conditions are cA(0) = 3 and cB(0) = 1. The
measurements correspond to the total pressure, which is
the sum of the two states. The sample period is ∆ = 0.1.
State estimation is carried out considering that x0 is
normal distributed with mean [3 1]T and variance I2. We
consider that in (18)-(19) a disturbance is introduced,
which is zero-mean Gaussian distributed with variance
Q ·∆, where Q = 0.01I2.

We are given N = 100 measurements, that are contam-
inated with additive zero-mean Gaussian white noise,
with variance ∆ ·R, with R = 0.01.

We compare the proposed approach (MAP-Bayes) with
Nx = 13 against a Particle Filter (PF) (Gordon et al.
1993) with Npf = 100, the Extended Kalman Filter
(EKF) (see e.g. (Jazwinski 1970)) and an approximation
to Full Bayesian Filtering via a fine deterministic grid
(FB). Also we consider a variant of our algorithm, where
instead of using MAP to obtain the single trajectory, we
use EKF.

Figures 1a-1b show the estimated mean value obtained
by each method. All the estimated mean values are close
to the mean obtained by FB, save for the mean value pro-
vided by EKF which is far from the FB’s estimate. Note
that the proposed EKF-Bayes approach provides satis-
factory results, even when EKF fails. Thus the combined
strategy remedies the failure of EKF even though EKF
is used as part of the combined algorithm. The failure of
EKF in the batch reactor example has been previously
reported in (Haseltine & Rawlings 2005).

Figure 2 shows the tradeoff in the MAP-Bayes approach
between performance and computational load. This
tradeoff is managed by choosing the number of points to

Fig. 1. Mean value of the distributions provided by each
method.
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Fig. 2. Trade off between computational load and perfor-
mance in MAP-Bayes method.
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be allocated, Nx. The performance is measured by using
the Hellinger divergence (see e.g. (Liese & Vajda 2006)),
where we use the distribution provided by FB as a
reference. The computational load is measured by the
average execution time per sample.

5.2 Water Tank

Consider a water tank having two areas: at some height,
hc, the transversal area increases by a factor of 10. We
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consider that the water level is measured with noise, and
we are interested in estimating the volume of water in
the tank.

The volume of water in the tank is governed by

dV

dt
= Vin − Vout (20)

where

Vout =


πr20

√
2g V

πr20
if V/(πr20) ≤ hc

πr20

√
2g( V

πr21
+ hc(1−

r20
r21

)) if V/(πr20) > hc

(21)

The input water volume is given by Vin = qin +w, with
qin constant andw an i.i.d. Gaussian distributed process,
with zero mean and variance ∆ ·Q. The sampling period
is ∆ = 0.1[s]. We measure the water level, that is related
to the volume by

h =


V
πr20

if h ≤ hc

V
πr21

+ hc(1− r20
r21

) if h > hc

(22)

and the measurements are contaminated with an addi-
tive zero-mean Gaussian white noise, with variance ∆·R.
The parameter values are chosen to be

r0 = 1/π; r1 =
√

10/π hc = 1/(πr20);

g = 9.80665; qin = 0.447

We are given N = 100 measurements. We assume that
the initial condition for the water volume is distributed
uniformly between 0 and 2. We take R = 0.01 and Q =
0.1.

We compare the proposed approach (MAP-Bayes)
against the Particle Filter (PF), the Extended Kalman
Filter (EKF) and an approximation to Full Bayesian
Filtering via a fine deterministic grid (FB). Also we
consider a variant of our algorithm, where instead of
using MAP to obtain the single trajectory, we use EKF.

For the MAP-Bayes method we use rolling horizon
length Nh = 1, and use Nx = 19 points to approxi-
mate the standard Normal distribution. In PF, we use
Npf = 100 particles. For the EKF we approximate the
initial distribution as Normal distributed with mean 1
and variance 1/3.

Table 1 shows the average running time per sample. We
see that the proposed MAP-Bayes and EKF-Bayes have
the same order of magnitud running time. For this ex-
ample PF requires the least computational effort.

Table 2 shows the Mean Square Error (MSE) (between
the “true value” as computed by FB and the given
method) of the mean, mode, variance and skewness
estimated for each method. For the estimated mean,
variance and skewness PF provides the best estimates,
but produce a poor estimate for the mode value. Next,
EKF-Bayes produces mean, variance and skewness es-
timates with the same order of magnitude error as PF,
nevertheless the estimated mode value is much better
than that provided by PF. The MAP-Bayes method
produces slightly worse estimates than EKF-Bayes,
however this could be problem dependant, since in
MAP-Bayes the points are allocated around the MAP
estimate, and in the EKF-Bayes method the points are
allocated around the mean value. EKF has the poorest
performance over all the methods.

Table 1
Average running time per sample for each method.

MAP-Bayes PF FB EKF EKF-Bayes

Time 0.046 0.003 3.660 0.002 0.016

Table 2
Mean Square Error of the mean, variance, mode and skew-
ness of each method, compared to that obtained by Full
Bayesian filtering.

Method mean mode variance skewness

MAP-Bayes 0.0245 0.0092 0.0029 0.5433

PF 0.0014 0.1341 0.0003 0.1545

EKF 0.1701 0.0856 0.0127 0.6341

EKF-Bayes 0.0030 0.0039 0.0004 0.3013

6 Conclusions

This paper has described a finite data and Moving
Horizon state estimation scheme which allows one to
combine MAP and Bayesian strategies. The scheme
resolves two difficulties that are inherent in the usual
(MAP based) Moving Horizon state estimation schemes,
namely (i) how to obtain a meaningful “arrival cost”
and (ii) how to quantify the accuracy of the resulting
estimates. The performance of the scheme has been
compared with other common schemes via simulation
examples. The examples show that the new scheme gives
good performance at reasonable computational cost. In
practice, the trade-off in computational effort depends
on the relative effort directed at finding the maximum
of a function and exploring the full a posteriori distri-
bution. The appropriate balance is problem dependent.
We thus encourage others to use the ideas presented
here. We provide access to preliminary software, see
http://db.tt/b459SW2e.
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